
Square Root Unit with Minimum Iterations
for Posit Arithmetic

Raul Murillo
Faculty of Physics

Complutense University of Madrid
28040 Madrid, Spain

Email: ramuri01@ucm.es

Alberto A. Del Barrio
Faculty of Computer Science

Complutense University of Madrid
28040 Madrid, Spain

Email: abarriog@ucm.es

Guillermo Botella
Faculty of Computer Science

Complutense University of Madrid
28040 Madrid, Spain

Email: gbotella@ucm.es

Abstract—In this paper, we introduce a novel implementation
of a square root algorithm specifically tailored for posit arithmetic.
Unlike traditional methods, the proposed approach capitalizes on
the inherent flexibility of posits, which lack fixed-length fields,
to optimize square root computations. By accurately estimating
the minimum number of required fraction bits, our algorithm
substantially reduces the recurrence iterations without sacrificing
accuracy. Implemented across standard 16-bit, 32-bit, and 64-bit
posit formats, our units showcase a significant latency reduction
in different applications with only a marginal increase in resource
utilization. Comparative analysis against previous pipelined
designs underscores the area efficiency of our proposed solutions.
This research significantly contributes to the advancement of
posit-based arithmetic units, presenting promising opportunities
for improving computational system efficiency.

Index Terms—Iterative algorithms, Square root, Posit arithmetic

I . I N T R O D U C T I O N

Posit arithmetic is a relatively recent alternative to floating-
point arithmetic for representing real numbers in computer
systems [1]. This format has been shown to provide a trade-off
between precision and dynamic range. Posit numbers (posits
in short) can represent a wide range of real numbers with
varying magnitudes and precision levels, making them well-
suited for both large and small values without suffering from the
same level of precision loss as floating-point formats. This has
been provided to be very interesting for multiple applications,
including climate modeling [2], radio astronomy [3], compu-
tation of differential equations [4], [5] or deep learning [6],
[7]. To offer such a flexible representation of real numbers,
in contrast to traditional floating-point formats, posit numbers
use a regime-exponent-fraction format where both the regime
and the exponent represent the scaling factor, and the fraction
contains the significant digits. However, this novel format is
not compatible with IEEE 754 formats [8] and derivates [9],
[10], and thus dedicated algorithms and hardware units must
be redesigned for practical computation in this format.

While multiple works have studied how to implement
addition and multiplication in posit format [11], [12], only a
few have explored the division and square root operations [13],
[14], [15], which are known to be much more complex than
the former ones. Efficient hardware support is necessary to

leverage properties of posit arithmetic in the aforementioned
areas.

Despite the significance of square roots, the efficient compu-
tation of such an operation in posit arithmetic remains largely
unexplored territory. In this paper, we focus on addressing this
gap by proposing a novel computer square root unit tailored
specifically for posit arithmetic.

The proposed approach harnesses the inherent properties of
posits to provide a high-performance and resource-efficient
solution for computing square roots in such a format. In
particular, we find the minimum number of iterations that the
radix-2 digit-recurrence algorithm needs to provide the exact
result, thus reducing the latency associated with square root
operations while maintaining accuracy and precision.

Through comprehensive experimentation and evaluation, the
proposed minimum-iterations unit consistently exhibits lower
latency than existing approaches in posit arithmetic with a
negligible area overhead, as well as requiring much fewer
resources than previous implementations.

The rest of this paper is organized as follows. Section II
reviews the fundamentals of posit arithmetic and previous works
related to posit square root units. Section III briefly describes
the foundations of digit-recurrence square root and delves into
the search of the minimum number of iterations required by
the algorithm when applied to posit arithmetic. In Section IV
the general architecture is presented and the main features of
the proposed units are outlined. An experimental performance
analysis and hardware evaluation of the units are discussed in
Section V. Finally, Section VI presents the main conclusions
of this work.

I I . B A C K G R O U N D

A. Posit arithmetic

Posit arithmetic was introduced in 2017 as an alternative to
the ubiquitous IEEE 754 floating-point standard to represent
and operate with real numbers [1]. The posit number system is
a floating-point encoding scheme with tapered precision, which
is achieved thanks to a variable-length encoding of the scaling
factor. According to the latest Standard for Posit™ Arithmetic
(2022) [16], an n-bit posit number (namely, Positn) is encoded
with four fields, as shown in Fig. 1:

Exponent FractionSign

1 bit

Regime

2 bits fs bitsrs+1 bits

Fig. 1. General Positn binary encoding.

• Sign. As for floats or signed integers, the first bit stands
for the sign (s): 0 for positive numbers, 1 for negative
numbers. In contrast to floats, which use a sign-magnitude
representation, posits are encoded in two’s complement.

• Regime. This field is unique to this number format.
The regime consists of a sequence of rs identical bits
R terminated either with the negation of such value
(1−R = R) or with the least significant bit (LSB) of the
posit. This sequence encodes the scaling factor r, given
by conditional Eq. (1). For example, when the regime is
4-bits, pattern 1110 encodes r = 2, while 0001 stands
for r = −3.

r =

{
−rs if R = 0

rs − 1 if R = 1
. (1)

• Exponent. The following two bits preceding the regime
encode another scaling factor e. Unlike with floats, the
exponent is unbiased. As the length of the regime field is
variable, there exists the possibility that some exponent
bits (or even all of them) are shifted out of the bit-string.
In such cases, missing bits are considered as 0.

• Fraction. The remaining bits after the exponent corre-
spond to the fraction field. Its value f ∈ [0, 1) is obtained
by dividing the unsigned integer encoded in this field
by 2fs . This is similar to the case of floats, with the only
difference being that the hidden bit depends on the sign
rather than on the exponent, so denormalized posits exist.

Posit numbers only distinguish two special cases: zero
and Not a Real (NaR), which are represented as 00...0
and 10...0 respectively. The rest of the representations are
composed of the aforementioned four fields, and the real value
p encoded is given by Eq. (2),

p = (−1)s × (1 + f)× 24r+e. (2)

B. Related work

Since its initial introduction, there has been considerable
interest in hardware implementations of posit arithmetic. A
plethora of standalone posit arithmetic units with different de-
grees of capabilities have been described in the literature, mostly
focused on addition, multiplication, and fused operations [17],
[18], [19], [12].

However, just a few works have addressed posit square
root computation [13], [14]. Both works propose functional
units for division and square root, since the algorithms for the
two operations are pretty similar. Indeed, the unit presented
in [13] supports the two operations in the same pipelined
hardware design. While the units from [14] are based on the
Newton-Raphson algorithm, the fused division and square-root

√

sIN rIN eIN

fOUTsOUT

NaR

rOUT eOUT

≫1

Frac. init

fIN

x

Posit decoding

Posit encoding & rounding

sqrt(x)

PRE-
PROCESSING

POST-
PROCESSING

MAIN
COMPUTATION

Fig. 2. Basic implementation of posit square root.

architecture from [13] is iterative, as it implements the non-
restoring algorithm.

Other works related to the implementation of a whole posit
processing unit include a square root unit component [20], [21],
[22]. While a 32-bit logarithm-approximate unit is employed
in [21], the other works implement a pipelined non-restoring
square root unit for different posit configurations. Non-standard
formats of 8-, 16-, and 32-bit posits with 1-, 2-, and 3-bit
exponents, respectively, are considered in [20]. On the other
hand, [22] implements arithmetic units for the standard Posit32
and Posit64 formats with 2 exponent bits.

I I I . P O S I T S Q U A R E R O O T

The square root is the only one among the basic operations
that considers a single input operand. As shown by Eq. (3), the
square root of a non-negative posit number p requires obtaining
the square root of the significand and producing the scaling
factor of the result.

√
p =

√
1 + f × 2

(4r+e)
2 . (3)

When implementing in hardware, if the exponent is odd, it is
decremented by 1, and the significand is multiplied by 2.

There exist several classes of algorithms and implementations
for the posit square root operation, but all of them follow
the same basic implementation depicted in Fig. 2. The main
difference resides in the computation of the square root
of the significand, for which digit recurrence, multiplicative,
approximate, or other special methods such as CORDIC are
often used. The methods of performing the square root
operation are conceptually very similar to the methods for
division [23], [24].

A. Digit-recurrence square root

Digit-recurrence is a class of iterative algorithms that
compute one digit of the result (represented in a radix-r form)

Algorithm 1 Non-restoring square root.
1: procedure N O N - R E S T O R I N G(X)
2: R0 ← X
3: Q0 ← 0 ▷ Q = (q0.q1q2 . . . qm)
4: for i = 0, . . . ,m− 1 do
5: if 2Ri ≥ 0 have the same sign then
6: Qi+1[i+ 1]← 1
7: Ri+1 ← 2Ri − (2Qi + 2−i)
8: else
9: Qi+1[i+ 1]← −1

10: Ri+1 ← 2Ri + (2Qi − 2−i)
11: return Qm

and the remainder every iteration [23], [24]. The remainder is
used to obtain the next least significant digit of the result. Digit-
recurrence algorithms are used frequently in modern processors
for the calculation of division and square root, as they present
a good trade-off in terms of performance, area, and power [25].

In this work, the square root is implemented using the binary
(radix-2) non-restoring method. Given a radicand X , the details
of such a method are described in Algorithm 1, being Ri and
Qi the remainder and partial result, respectively. At every
iteration i, a new digit of the result is obtained from the current
remainder, a new remainder is computed for the next iteration,
and the partial result is updated.

As using radix-2, the partial result digits can take values
qi ∈ {−1, 0, 1}, which must be converted to a binary
representation every iteration. The most efficient conversion
technique is the well-known on-the-fly conversion [23], [24].

To obtain the root, the algorithm requires the operand to be
in the range [0.25, 1). Since the significands of posit numbers
are within [1, 2), the input to the square root submodule is
divided by 2 (of by 4, if the exponent is odd) to guarantee
such a condition. This is done by a 1-bit (or 2-bit) operand
left-shift.

B. Number of sqrt iterations

The digit-recurrence methods obtain one digit per iteration,
from most to least significant, i.e., the result generated by
these methods becomes more accurate after each iteration.
Therefore, the number of iterations of the recurrence step is
dependent on the number of bits of the final result, but also
on the scaling introduced by the initialization, the rounding
bits, and the radix [23]. In the particular case of radix-2, the
number of iterations is m = k + 2, where k is the bit-length
of the radicand.

In the realm of posit arithmetic, the regime, and thus the
fraction field, do not always have the same bit-length. For
example, consider the following two Posit8 numbers

p1 := 0 000 1 01 12 = 0.000 732 421 87510,

p2 := 0 11 0 10 112 = 11210.

By calculating the square root of the above numbers (note that
posit arithmetic applies round to nearest even) we get

√
p1 := 0 00 1 10 112 = 0.027 343 7510,√
p2 := 0 1 0 11 0112 = 1110,

which have more fraction bits than p1 and p2, but not necessarily
the maximum three fraction bits that a Posit8 number can have.
The square root operation always returns a closer value to 1.
In posit arithmetic, numbers have more fraction bits as they
approach 1. This means that the square root of a posit number
will have the same or more fraction bits than the radicand.

Computing more fraction bits than the length of the final
fraction is thus unnecessary, as such bits will be discarded (just
a pair of extra bits are necessary for proper rounding). On this
basis, let us determine, for a given posit number, the exact
number of fraction bits that the result of the square root of
that number will have. In this way, we will find the minimum
number of iterations that the algorithm needs to provide the
exact result, thus reducing the latency of the operation.

Let us denote the size (amount of bits) of the regime and
fraction fields in a posit number as rs and fs, respectively.
For a more general proof, let us consider any fixed size for
the exponent field to es (if the regime is large enough, such
exponent bits are not shown in the bitstring, and thus they are
considered to have the value 0). Considering that the sign bit
is always present, and the regime is delimited by a flipped
bit, the length of the fraction length for any Positn number is
given by Eq. (4),

fs = max{n− 2− rs − es, 0}. (4)

Note that, since the minimum regime length is 1, the maximum
bit-length of the fraction field is n− es − 3.

When performing the square root of a posit number, accord-
ing to Eq. (3), the value comprised by the regime and the
exponent is divided by 2. However, the exponent and regime
fields of the result must be encoded in the same manner as every
posit data, i.e., using 2 bits for the exponent, and considering
the regime as a factor shifted according to the exponent size.
Therefore, considering p̂ to be the root of a non-negative posit
number p, we can re-write Eq. (3) as Eq. (5),

p̂ =
√
p =

√
1 + f × 2

(2esr+e)
2

=
√
1 + f × 22

es r
2+

e
2

= (1 + f̂)× 2(2
es r̂+ê).

(5)

As can be seen, when applying the square root operation to
a posit number, the regime value of the result will be half
(note that, when implemented in hardware, if the initial regime
is odd, the least significant bit will be absorbed by the most
significant bit of the exponent, and the case of odd exponent
is treated in the algorithm initialization). At this point, it is
worth recalling two things: (1) the exponent always encodes
a non-negative value, and (2) if the regime value is negative,
the regime field contains as bits as such a value, otherwise the
length of the regime is one more bit than the value. Under

TABLE I
N U M B E R O F R E S U LT F R A C T I O N B I T S , I T E R AT I O N S O F T H E

A L G O R I T H M A N D L AT E N C Y O F T H E S Q R T U N I T

Fraction bits Radix-2 iterations Sqrt unit latency

Posit16 4 – 11 6 – 13 8 – 15
Posit32 12 – 27 14 – 29 16 – 31
Posit64 28 – 59 30 – 61 32 – 63

Float16 10 12 14
Float32 23 25 27
Float64 52 54 56

these considerations it follows that the size of the root regime
will also be half the initial size, rounding up in the case of
odd length. Substituting this in Eq. (4) yields the size of the
resulting fraction field, depicted in Eq. (6),

f̂s = n− 2−
⌈rs
2

⌉
− es. (6)

Note that, since rs ∈ [1, n− 1], the result given by Eq. (6) is
also bounded. In particular, fs ∈

[⌈
n
2

⌉
− 2− es, n− 3− es

]
.

Finally, as aforementioned, the algorithms require two more
iterations than the fraction size of the result.

The number of resulting fraction bits for common posit
configurations, as well as the number of radix-2 iterations of
the proposed approach, are summarized in the left and center
columns of Table I. Indeed, it shows the minimum number of
iterations that must be computed with this algorithm to provide
an exact posit answer. Note that, if the size of the final fraction
is not considered, the number of iterations of the algorithm
should always be fixed according to the largest possible fraction
size, i.e. n− 1− es. As can be seen, this approach can reduce
the number of iterations in this kind of algorithm, especially in
the larger bit-length cases. For comparison purposes, fraction
size and iterations for IEEE 754 floating-point formats are also
displayed in Table I.

I V. U N I T I M P L E M E N TAT I O N

The square root algorithm presented in Section III can be
implemented in multiple ways. In this paper, a sequential
design is presented to reuse the digit iteration logic over
several cycles, resulting in a lower area design. This decision
has the drawback that can not be pipelined, resulting in a
lower throughput. However, pipelining these kinds of iterative
architectures substantially increases hardware resources. In
modern processors, the throughput is increased by placing
several non-pipelined units operating in parallel. Moreover,
in this work, we leverage the variable length feature of the
posit format to provide higher throughput in the square root
operation, computing just the minimum necessary iterations of
the digit-recurrence algorithm.

The general organization of the proposed posit sqrt unit is
shown in Fig. 2. The three parts of the microarchitecture are
clearly differentiated.

The pre-processing includes decoding the posit regime,
exponent, and fraction fields, as well as the fraction prepa-

ration for digit recurrence square root. The number of digit
recurrence steps is also computed in the pre-processing, based
on the regime length of the input posit. The main phase of
the computation consists of calculating the square root of
the fraction. For this purpose, a combinational module that
implements a recurrence step has been designed, together with
a sequential control unit that manages the data flow. The control
unit can handle a variable number of computation iterations
so that it signals as soon as the final result is available. The
final regime and exponent are also computed in this phase.
Post-processing includes the rounding and encoding of the
regime to have a posit-compliant result. The three parts of the
unit are split into different hardware stages.

As shown in the right-side of Table I, the latency of the
units is the sum of the digit iterations cycles, plus the number
of pre-processing and post-processing cycles (special cases can
be detected in the pre-processing stage, but such latency is
omitted for the sake of clarity).

A case that deserves special attention is when a zero
remainder is obtained in an intermediate step. If the remainder
gets such a value in a certain iteration, it means that the
exact root of the input is computed at that time, and no extra
iterations are needed. Therefore, detecting the occurrence of
a zero intermediate remainder allows for early-termination,
reducing the latency in certain situations. This optimization is
incorporated into the proposed square root unit.

The aforementioned design was implemented in VHDL for
different configurations: Posit16, Posit32, and Posit64. The
units were verified with the help of the reference library
Universal [26], generating an exhaustive testbench for the 16-
bit unit, as well as random tests for the 32-bit and 64-bit units.
All these tests were successful. The implementation of these
posit units has been made freely available1.

V. E VA L U AT I O N

In this section, the proposed sequential square root unit is
evaluated in terms of both performance and hardware resources,
and compared with the naive square root approach that performs
a fixed number of iterations.

Unfortunately, none of the previous works [13], [14] present-
ing posit square root units have made the implementations
publicly available. Just the works presented in [20], [22]
integrate in their designs a posit square root unit available
for comparison. Although such units have implementations of
the non-restoring algorithm, only the ones from [22] maintain
standard posit formats with a 2-bit exponent. Consequently,
only the latter designs have been included in this discussion.

A. Latency reduction

The latency of square root calculation with the proposed
approach is shown on the right side of Table I. The table
shows the minimum and maximum latency for the three posit
precisions of interest, Posit16, Posit32, and Posit64, and for
the theoretical latency corresponding IEEE 754 floating-point

1https://github.com/artecs-group/ARITH24

https://github.com/artecs-group/ARITH24

Fig. 3. Latency of the non-restoring Posit16 square root unit per input.

precisions. Note that, in a scenario that does not take into
account the actual size of the resulting fraction, the maximum
number of iterations should be performed, as in the case of
floating point units.

As can be seen in the table, the proposed approach makes
it possible to reduce the latency of the square root operation
by half, so that it can be even lower than for floating-point.

However, this depends only on the length of the regime and
the fraction of the radicand, and therefore on the dynamic range
and precision of the particular input. It is noteworthy that such
a reduction in the number of iterations does not reduce the
precision of the result, but merely produces a result with just
the right precision, without any more fraction bits that will be
discarded in the rounding and post-processing stage.

To provide a better understanding of the relation between
the input radicand and the latency of the unit, we simulated
an exhaustive testbench for Posit16 inputs and recorded the
number of cycles used by the unit to generate the correct result
(with the use of a synchronous counter). Fig. 3 displays, for
every non-negative Posit16 number, the latency of the proposed
square root unit when considering either a fixed or a variable
(minimum) number of iterations.

As can be seen, for the central region (which corresponds
to values close to 1), the variable approach can not reduce any
iteration. This is because, in such a region, the size of the posit
regime is minimal, while more bits are used to represent the
fraction, and values within that region have a higher precision.
In fact, this is the region where posits provide higher accuracy
than floats [27]. However, as we move away from this zone,
the number of iterations required by the algorithm becomes
smaller, since the regime bits increase (allowing us to represent
quantities of much smaller/larger magnitude).

Also, Fig. 3 compares the actual latency of the units with
or without using the early-termination for zero intermediate
remainder. As can be seen, such an optimization allows to
compute the result faster in some cases, even with fewer cycles
than those indicated by Table I (3 instead of 8 in the best case,
when the input is a power of 4, and the remainder becomes zero

after the first iteration of the algorithm). However, the plots
regarding early-termination still exhibit the same latency upper
bound. Also, about half of the zero intermediate remainders
are detected in the region that requires the maximum possible
iterations. All this suggests that such an optimization could not
be equivalent or alternative, but complementary to the minimum
iteration estimation presented in this paper.

On the other hand, it would be worthwhile to evaluate
the performance of the proposed units in real applications
to compare both approaches. To accomplish this, we consid-
ered different benchmarks from the PolyBench/C benchmark
suite [28], in particular, those containing square root operations,
and simulated Posit32 computation using the software library
Universal [26]. The input and output of the square root
operations were collected for processing in the implemented
hardware units. Table II contrasts the performance of the
proposed square root units employing the fixed- and variable-
iterations methods.

Utilizing a variable-iterations algorithm effectively reduces
latency across all benchmark scenarios, to a greater extent
the larger the size of the dataset. While the reduction of
cycles is not very pronounced for the correlation benchmark
(reducing the cycles by 0.02% in the M I N I dataset, up to
3.23% in the L A R G E dataset), the effect is more notable in
the gramschmidt benchmark (reducing the number of cycles
between 7.58% and 8.92%). The reason behind this lies in
the dynamic range of the data. While the posit numbers
computed in the gramschmidt benchmark lie in an interval
of, for example,

(
3.6× 10−12, 1.7× 105

)
in the M E D I U M

dataset, the correlation benchmark data fall within the interval(
16, 2.3× 104

)
, i.e., much more concentrated in the area of

smaller posit regime, the central area shown in Fig. 3.
In summary, it has been shown that the proposed posit

square root unit can reduce several iterations, providing better
throughput for this operation, but this depends on the dynamic
range of the data.

One aspect worth noting is the effect of the early-termination
by a zero remainder. To answer this question, these same
experiments were repeated without using the detection of
the occurrence of a zero intermediate remainder for an early-
termination. It turned out that just the L A R G E gramschmidt
benchmark was taking advantage of such optimization. In
particular, a total of 17 cycles were saved thanks to this early-
termination, in the baseline operator, and 15 cycles in the
variable-latency proposed unit. Nevertheless, other applications
may stand to benefit from such an optimization, as numerous
posits have a perfect square as their significand value, as shown
in Fig. 3.

In light of these results, it is substantiated that in real
applications, the detection of zero intermediate remainder
has almost no overlap with the estimation of the number of
iterations, and therefore both optimizations can be leveraged
to further increase the performance of the unit. Furthermore,
the cost associated with implementing the detection of whether
the remainder is zero is minimal.

TABLE II
N U M B E R O F C Y C L E S C O R R E S P O N D I N G T O S Q U A R E R O O T O P E R AT I O N S I N P O S I T 3 2 F O R D I F F E R E N T B E N C H M A R K S

correlation gramschmidt

Design MINI SMALL MEDIUM LARGE MINI SMALL MEDIUM LARGE

operations 924 8080 62640 1681200 30 80 240 1200

Fixed iterations 28644 42480 1941840 52117200 930 2480 7440 37183
Variable iterations 28637 42400 1879200 50434800 847 2292 6803 34291
Reduction -7 -80 -62640 -1682400 -83 -188 -637 -2892

TABLE III
S Y N T H E S I S R E S U LT S

Bits Design
Area

(µm2)
Power
(mW)

Slack
(ns)

Fixed iterations 625.21 0.0810 0.46
16

Variable iterations 638.19 0.0836 0.46

Fixed iterations 1296.79 0.1501 0.06
Variable iterations 1314.43 0.1534 0.0632
P E R C I VA L [22] 5937.37 0.5406 0.00

Fixed iterations 3256.47 0.3047 0.19
Variable iterations 3282.80 0.3089 0.1964
P E R C I VA L [22] 26665.25 2.0427 0.00

B. ASIC synthesis

The proposed square root unit designs are evaluated in terms
of area, power, latency, and energy. Both proposed designs,
using a fixed or a variable number of iterations, implement the
zero remainder detection for an early-termination. The variable-
latency units dynamically compute the minimum required
recurrence iterations according to the regime of the input.

The comparison between the variable- and the fixed-iterations
units is shown in Table III. Units for 16-bit, 32-bit, and 64-bit
posit configurations have been implemented using a TSMC
28 nm technology and targeting the same frequency of 1 GHz.

Starting with the delay, the timing constraint was met by
all the units. In fact, the critical path of the units is in the
square root module, and not in the pre-processing stage, which
contains the logic for performing the estimation of the number
of iterations.

As expected, the variable-latency designs present a certain
area overhead, as it requires computing the number of digit-
recurrence iterations, in contrast to just considering a fixed
amount of iterations. However, such units use a very small
amount more area, ranging from 0.81% for the Posit64 unit,
up to 2.08% in the case of Posit16.

In terms of power, again a small overhead is obtained as in
the case of the area, as they are correlated. More precisely, the
novel variable-latency 16-bit, 32-bit, and 64-bit posit square
root units use 3.21%, 2.20%, and 1.38% more power than the
classical fixed-latency, respectively.

Overall, the numbers displayed in Table III show a relatively
small overhead for the variable-iterations approach, especially

considering the substantial potential for reducing latency in
square root operations offered by such units.

Finally, regarding previous works, the posit arithmetic unit
presented in [22] contains a 5-stage pipelined square root unit
for Posit32, and a 13-stage pipeline unit for Posit64. Although
this might provide much better throughput than the proposed
units, according to the original paper, the arithmetic units are
designed to work at 50 MHz on FPGA, a much lower frequency
than the one set as target in this evaluation (1 GHz). To make
the comparison as fair as possible, the exact square root units
from P E R C I VA L [22]2 were implemented targeting the same
technology and frequency. The synthesis results in Table III
reveal the cost for such a high performance. The area and
power of the 32-bit pipelined units are 4.52× and 3.52× more
than the proposed variably-latency design, respectively. This
overhead is even more pronounced in the 64-bit case, increasing
area and power by a factor of 8.12× and 6.61×, respectively.

V I . C O N C L U S I O N

A modified radix-2 non-restoring algorithm is presented as
a core unit for posit square root arithmetic circuits. The pro-
posed approach estimates the minimum number of recurrence
iterations that provide the exact result without compromising
accuracy.

The proposed algorithm has been implemented for standard
posit configurations of 16-, 32-, and 64-bits. The units reduce
latency by up to half for certain posit values compared to
the classical fixed-iterations approach used in other arithmetic
formats. Additionally, some other improvements have been
made in the square root units to increase throughput.

Evaluation reveals an effective latency reduction of up
to 8.92% in real applications with marginal area overhead.
Hardware utilization was also compared against previous
pipelined designs, illustrating the efficiency of the proposed
units.

This work opens avenues for advancing posit-based arith-
metic units, enhancing efficiency in computational systems.
Future work involves integrating the proposed minimum-
iterations approach into posit division units, as the methods of
performing such an operation are conceptually similar to those
presented in this paper.

2Designs obtained from https://github.com/artecs-group/PERCIVAL/tree/
fd1d154.

https://github.com/artecs-group/PERCIVAL/tree/fd1d154
https://github.com/artecs-group/PERCIVAL/tree/fd1d154

R E F E R E N C E S

[1] J. L. Gustafson and I. T. Yonemoto, “Beating Floating Point at Its Own
Game: Posit Arithmetic,” Supercomputing Frontiers and Innovations,
vol. 4, no. 2, 2017.

[2] M. Klöwer, P. D. Düben, and T. N. Palmer, “Number Formats, Error
Mitigation, and Scope for 16-Bit Arithmetics in Weather and Climate
Modeling Analyzed With a Shallow Water Model,” Journal of Advances
in Modeling Earth Systems, vol. 12, no. 10, 2020.

[3] T. K. Gunaratne, “Evaluation of the Use of Low Precision Floating-Point
Arithmetic for Applications in Radio Astronomy,” in Conference for Next
Generation Arithmetic (CoNGA), vol. 13851 LNCS. Springer Nature
Switzerland, 2023, pp. 155–170.

[4] R. Murillo, A. A. Del Barrio, and G. Botella, “The Effects of Numerical
Precision In Scientific Applications,” in 2022 Annual Modeling and
Simulation Conference (ANNSIM). IEEE, 2022, pp. 152–163.

[5] M. Klöwer, P. V. Coveney, E. A. Paxton, and T. N. Palmer, “Periodic
orbits in chaotic systems simulated at low precision,” Scientific Reports,
vol. 13, no. 1, p. 11410, 2023.

[6] R. Murillo, A. A. Del Barrio, and G. Botella, “Deep PeNSieve: A deep
learning framework based on the posit number system,” Digital Signal
Processing: A Review Journal, vol. 102, p. 102762, 2020.

[7] J. Lu et al., “Evaluations on Deep Neural Networks Training Using
Posit Number System,” IEEE Transactions on Computers, vol. 70, pp.
174–187, 2021.

[8] IEEE Computer Society, “IEEE Standard for Floating-Point Arithmetic,”
IEEE Std 754-2019 (Revision of IEEE 754-2008), vol. 2019, pp. 1–84,
2019.

[9] J. Hormigo and J. Villalba, “New formats for computing with real-numbers
under round-to-nearest,” IEEE Transactions on Computers, vol. 65, no. 7,
pp. 2158–2168, 2016.

[10] G. Henry, P. T. P. Tang, and A. Heinecke, “Leveraging the bfloat16
Artificial Intelligence Datatype for Higher-Precision Computations,” in
2019 IEEE 26th Symposium on Computer Arithmetic (ARITH). IEEE,
2019, pp. 69–76.

[11] R. Murillo, A. A. Del Barrio, and G. Botella, “Customized Posit Adders
and Multipliers using the FloPoCo Core Generator,” in 2020 IEEE
International Symposium on Circuits and Systems (ISCAS), 2020, pp.
1–5.

[12] H. Zhang and S.-B. Ko, “Design of Power Efficient Posit Multiplier,”
IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67,
no. 5, pp. 861–865, 2020.

[13] A. Raveendran et al., “A Novel Parametrized Fused Division and
Square-Root POSIT Arithmetic Architecture,” in 2020 33rd International

Conference on VLSI Design and 2020 19th International Conference on
Embedded Systems (VLSID), 2020, pp. 207–212.

[14] F. Xiao et al., “Posit Arithmetic Hardware Implementations with The
Minimum Cost Divider and SquareRoot,” Electronics, vol. 9, no. 10,
2020.

[15] R. Murillo, A. A. Del Barrio, and G. Botella, “A Suite of Division
Algorithms for Posit Arithmetic,” in 2023 IEEE 34th International
Conference on Application-specific Systems, Architectures and Processors
(ASAP). IEEE, 2023, pp. 41–44.

[16] J. L. Gustafson et al., “Standard for Posit™ Arithmetic,” Posit
Working Group, Standard, 2022, online. [Online]. Available: https:
//github.com/posit-standard/Posit-Standard-Community-Feedback

[17] M. K. Jaiswal and H. K. So, “PACoGen: A Hardware Posit Arithmetic
Core Generator,” IEEE Access, vol. 7, pp. 74 586–74 601, 2019.

[18] R. Murillo, D. Mallasén, A. A. Del Barrio, and G. Botella, “Energy-
Efficient MAC Units for Fused Posit Arithmetic,” in 2021 IEEE 39th
International Conference on Computer Design (ICCD), 2021, pp. 138–
145.

[19] H. Zhang, J. He, and S.-B. Ko, “Efficient Posit Multiply-Accumulate Unit
Generator for Deep Learning Applications,” in 2019 IEEE International
Symposium on Circuits and Systems (ISCAS), vol. 2019-May. IEEE,
2019.

[20] S. D. Ciocirlan et al., “The Accuracy and Efficiency of Posit Arithmetic,”
in 2021 IEEE 39th International Conference on Computer Design (ICCD).
IEEE, 2021, pp. 83–87.

[21] D. Mallasén et al., “PERCIVAL: Open-Source Posit RISC-V Core With
Quire Capability,” IEEE Transactions on Emerging Topics in Computing,
vol. 10, no. 3, pp. 1241–1252, 2022.

[22] D. Mallasén, A. A. Del Barrio, and M. Prieto-Matias, “Big-PERCIVAL:
Exploring the Native Use of 64-Bit Posit Arithmetic in Scientific
Computing,” IEEE Transactions on Computers, 2024.

[23] M. D. Ercegovac and T. Lang, Digital Arithmetic. Elsevier, 2004.
[24] I. Koren, Computer Arithmetic Algorithms. A K Peters/CRC Press,

2018.
[25] J. D. Bruguera, “Low latency floating-point division and square root unit,”

IEEE Transactions on Computers, vol. 69, no. 2, pp. 274–287, 2020.
[26] E. T. L. Omtzigt and J. Quinlan, “Universal: Reliable, Reproducible, and

Energy-Efficient Numerics,” in Conference on Next Generation Arithmetic
(CoNGA), vol. 13253, 2022, pp. 100–116.

[27] Y. Uguen, L. Forget, and F. de Dinechin, “Evaluating the Hardware Cost
of the Posit Number System,” in 2019 29th International Conference on
Field Programmable Logic and Applications (FPL). Barcelona, Spain:
IEEE, 2019, pp. 106–113.

[28] L.-N. Pouchet and T. Yuki, “PolyBench/C 4.2,”
https://sourceforge.net/projects/polybench/, 2016.

https://github.com/posit-standard/Posit-Standard-Community-Feedback
https://github.com/posit-standard/Posit-Standard-Community-Feedback

	Introduction
	Background
	Posit arithmetic
	Related work

	Posit square root
	Digit-recurrence square root
	Number of sqrt iterations

	Unit implementation
	Evaluation
	Latency reduction
	ASIC synthesis

	Conclusion
	References

